
V​ERSION​ 2.0

J​UNE​ 15, 2018

D​UAL​ S​ECURITY​ S​YSTEM
T​EAM​ S​ECURITY

 ​ P​RESENTED​ ​BY​: J​OSEPH​ C​HANG
H​IEU​ N​GUYEN

R​ICHARD​ N​GUYEN
B​ENJAMIN​ C​HANG

K​IN​ M​ING​ L​OH

REQUIRED DOWNLOADS / INSTALLATION

1. Latest version of Arduino: ​https://www.arduino.cc/en/Main/Software
2. Latest version of MATLAB: ​https://matlab.ucsd.edu/student.html#access
3. Latest version of Solidworks: ​https://acms.ucsd.edu/services/software/available-software/solidworks.html
4. Latest version of Inkscape: ​https://inkscape.org/en/release/0.92.3/
5. RFID Arduino Library: ​https://github.com/miguelbalboa/rfid
6. Image Acquisition Toolbox: ​https://www.mathworks.com/help/matlab/matlab_env/get-add-ons.html
7. Computer Vision Toolbox: ​https://www.mathworks.com/help/matlab/matlab_env/get-add-ons.html

2
ECE 196 | SPRING 2018

https://www.arduino.cc/en/Main/Software
https://matlab.ucsd.edu/student.html#access
https://acms.ucsd.edu/services/software/available-software/solidworks.html
https://inkscape.org/en/release/0.92.3/
https://github.com/miguelbalboa/rfid
https://www.mathworks.com/help/matlab/matlab_env/get-add-ons.html
https://www.mathworks.com/help/matlab/matlab_env/get-add-ons.html

PROJECT DESCRIPTION & MOTIVATION
This project builds an electronic security system for a door or safe. A model door will be laser cut from

wood and a latch lock will be attached to it. Two door hinges will be 3D printed. A master card will be able to add
new cards by storing their IDs in a database. An LCD display shows commands such as “Scan card”,
“Authorized”, or “Unauthorized”. If an unknown card is scanned after the master card, it will be added. If it is
scanned after the master card again, it will be removed.

If an authorized card is scanned, a servo unlocks the latch lock. An RGB LED lights up green or red
based on whether unlocking is successful or not. A proximity sensor senses the doors’ proximity to the door
frame. If the door is opened then closed, the servo will relock the door.

 When a PIR sensor detects motion, the webcam turns on and tracks the entrant’s face in real-time

using two servos and MATLAB’s Computer Vision toolbox. The webcam will record video while motion is

detected and store it in a computer. Parts are 3D-printed to connect the servos and webcam together.

This security system can be used to increase the security of a typical latch lock through RFID and

surveillance. Using an RFID scanner avoids lockpicking and installing a camera has been proven to decrease

crime by 40%. The camera’s stored surveillance can be reviewed after a crime as well. This system is relatively

inexpensive to implement and could be installed homes or public environments.

PROJECT ORIGINALITY

This project builds upon an existing RFID scanner project by adding an RGB LED as a visual cue to tell
whether an ID scan is successful or not. It also incorporates a camera controlled by a robotic arm. This system
turns on when motion is detected and tracks a person’s face while recording video. When motion stops, this
video is then stored in a computer. Using a motion detector lowers power consumption and memory overuse
as the camera only records events of significance.

OVERALL LEARNING OBJECTIVES

● Matlab-Arduino serial communications
● Matlab-Webcam interface
● Servo calibration for face tracking
● Program RFID with Arduino IDE
● 3D Printing, Solidworks
● Laser Cutting, Inkscape

3
ECE 196 | SPRING 2018

ALL REQUIRED PROJECT PARTS

Material Vendor Price Quantity Cost Grand
Total

Dingmai Uno R3 Amazon $10.99 1 $10.99

Arduino Mega Self $0.00 1 $0.00

Qunqi MFRC-522 RC522 Amazon $7.29 1 $7.29

CNY70 Optical Sensor Amazon $4.22 1 $4.22

Small Servo Motor Sparkfun $8.95 1 $8.95

RGB LED Motor Sparkfun $1.95 1 $1.95

Arducam 1602 16x2 LCD Display Amazon $5.99 1 $5.99

Logitech C270 Webcam Amazon $21.99 1 $21.99

PIR Motion Sensor (JST) Sparkfun $9.95 1 $9.95

Servo - Generic High Torque Standard Size Sparkfun $12.95 2 $25.90

AK672/2-1 Cable Digi-Key $2.05 2 $4.10

Breadboard Solderless 400 Tie Digi-Key $4.50 1 $4.50

220 Ohm Resistor Lab $0.00 4 $0.00

10k Ohm Resistor Lab $0.00 1 $0.00

¼” Plywood Lab $0.00 1 $0.00

 $105.83

REQUIRED PROJECT TOOLS/EQUIPMENT

● Laptop Computer
● Phone (or other weight) to hold down webcam servos

4
ECE 196 | SPRING 2018

PROJECT BUILD STEPS

CARD SCANNER

Build the circuit found under “Project Schematics” using an Arduino Mega, proximity sensor, small servo,
RGB LED, LCD display, and a MFRC522 RFID reader.

Open the Arduino IDE and download the RFID Arduino Library found in “Required Downloads” section. Go
to the Arduino toolbar and go to: Sketch > Include Library > Add .ZIP Library. Select the Arduino Library you
just downloaded and add it. Your Arduino IDE is now able to use functions and methods that are in the
MFRC522 library.

Obtain the RFID Arduino code from How To Mechatronics found in the “References” section and upload it to
Arduino. Test to see that the circuit works except for the LED by following the steps on the LCD display.
Make sure to keep the proximity sensor covered with a finger until an authorized card has been scanned.
Then uncover and cover it again to simulate a door opening and closing after an authorized card has been
scanned.

Before proceeding, go through the code to understand how it works as the next step will add changes to the
code. The code changes can be implemented on your own using the information found under the ​Code
Changes​ section. Another option is to use the code found under the ​Final Code​ section which can be used
directly or as a reference.

Code Changes
Note that the servo may not rotate at the desired angle. For this project, the unlocking servo value was 100
and the initial locking servo value was 10. These values can be changed as needed.

myServo.​write​(​100​); ​// Unlocks the door
myServo.​write​(​10​); ​// Initial lock position of the servo motor

To make it easier to set the RGB LED’s color, create a ​setColor​ function at the bottom of your code.

Red is for unauthorized cards, Green is for authorized cards, and Blue is for when the system is waiting for a
card to be scanned. Use the following code to setup the RGB LED and call the ​setColor​ function to change
the RGB LED color.

5
ECE 196 | SPRING 2018

Initialization Code:

const​ ​int​ redPin = ​22​;
const​ ​int​ greenPin = ​24​;
const​ ​int​ bluePin = ​26​;
int​ red = ​0​;
int​ green = ​0​;
int​ blue = ​0​;

Setup Code:

// Set the three LED Pins as outputs

pinMode​(redPin, ​OUTPUT​);
pinMode​(greenPin, ​OUTPUT​);
pinMode​(bluePin, ​OUTPUT​);

Lastly, code must be added to prevent someone from removing the mastercard using the mastercard itself.
Place the following code in the code logic after the mastercard has been scanned and another card has just
been scanned, but has not been added or removed yet.

if​(tagID==myTags[​0​]){
 lcd.​clear​();
 lcd.​setCursor​(​0​,​0​);
 lcd.​print​(​" Cannot remove "​);
 lcd.​setCursor​(​0​,​1​);
 lcd.​print​(​" Master Tag! "​);
 printNormalModeMessage();

 correctTag=true;

 successRead=false;

 ​return​;
}

Final Code

#​include​ ​<SPI.h>
#​include​ ​<MFRC522.h>
#​include​ ​<LiquidCrystal.h>
#​include​ ​<Servo.h>
#​define​ RST_PIN 9
#​define​ SS_PIN 10
byte​ readCard[​4​];
char​* myTags[​100​] = {};
int​ tagsCount = ​0​;
String​ tagID = ​""​;
boolean​ successRead = false;
boolean​ correctTag = false;
int​ proximitySensor;
boolean​ doorOpened = false;

6
ECE 196 | SPRING 2018

const​ ​int​ redPin = ​22​;
const​ ​int​ greenPin = ​24​;
const​ ​int​ bluePin = ​26​;
int​ red = ​0​;
int​ green = ​0​;
int​ blue = ​0​;
// Create instances

MFRC522 mfrc522(SS_PIN, RST_PIN);

LiquidCrystal​ lcd(​2​, ​3​, ​4​, ​5​, ​6​, ​7​); ​//Parameters: (rs, enable, d4, d5, d6, d7)
Servo​ myServo; ​// Servo motor
void​ ​setup​() {
 ​// Set the three LED Pins as outputs
 ​pinMode​(redPin, ​OUTPUT​);
 ​pinMode​(greenPin, ​OUTPUT​);
 ​pinMode​(bluePin, ​OUTPUT​);
 setColor(​0​,​0​,​255​);
 ​// Initiating
 ​SPI​.​begin​(); ​// SPI bus
 mfrc522.PCD_Init(); ​// MFRC522
 lcd.​begin​(​16​, ​2​); ​// LCD screen
 myServo.​attach​(​8​); ​// Servo motor
 myServo.​write​(​10​); ​// Initial lock position of the servo motor
 ​// Prints the initial message
 lcd.​print​(​"-No Master Tag!-"​);
 lcd.​setCursor​(​0​, ​1​);
 lcd.​print​(​" SCAN NOW"​);
 ​// Waits until a master card is scanned
 ​while​ (!successRead) {
 successRead = getID();

 ​if​ (successRead == true) {
 myTags[tagsCount] = strdup(tagID.c_str()); ​// Sets the master tag into position 0
in the array

 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​"Master Tag Set!"​);
 tagsCount++;

 }

 }

 successRead = false;

 printNormalModeMessage();

}

void​ ​loop​() {
 ​int​ proximitySensor = ​analogRead​(A0);
 ​// If door is closed...
 ​if​ (proximitySensor > ​200​) {
 ​if​ (! mfrc522.PICC_IsNewCardPresent()) { ​//If a new PICC placed to RFID reader
continue

7
ECE 196 | SPRING 2018

 ​return​;
 }

 ​if​ (! mfrc522.PICC_ReadCardSerial()) { ​//Since a PICC placed get Serial and
continue

 ​return​;
 }

 tagID = ​""​;
 ​// The MIFARE PICCs that we use have 4 byte UID
 ​for​ (uint8_t i = ​0​; i < ​4​; i++) { ​//
 readCard[i] = mfrc522.uid.uidByte[i];

 tagID.concat(​String​(mfrc522.uid.uidByte[i], HEX)); ​// Adds the 4 bytes in a single
String variable

 }

 tagID.toUpperCase();

 mfrc522.PICC_HaltA(); ​// Stop reading
 correctTag = false;

 ​// Checks whether the scanned tag is the master tag
 ​if​ (tagID == myTags[​0​]) {
 lcd.​clear​();
 lcd.​print​(​"Program mode:"​);
 lcd.​setCursor​(​0​, ​1​);
 lcd.​print​(​"Add/Remove Tag"​);
 ​while​ (!successRead) {
 successRead = getID();

 ​if​ (successRead == true) {
 ​if​ (tagID == myTags[​0​]){
 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​" Cannot remove "​);
 lcd.​setCursor​(​0​, ​1​);
 lcd.​print​(​" Master Tag! "​);
 printNormalModeMessage();

 correctTag = true;

 successRead = false;

 ​return​;
 }

 ​for​ (​int​ i = ​1​; i < ​100​; i++) {
 ​if​ (tagID == myTags[i]) {
 myTags[i] = ​""​;
 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​" Tag Removed!"​);
 printNormalModeMessage();

 ​return​;
 }

 }

 myTags[tagsCount] = strdup(tagID.c_str());

8
ECE 196 | SPRING 2018

 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​" Tag Added!"​);
 printNormalModeMessage();

 tagsCount++;

 ​return​;
 }

 }

 }

 successRead = false;

 ​// Checks whether the scanned tag is authorized
 ​for​ (​int​ i = ​1​; i < ​100​; i++) {
 ​if​ (tagID == myTags[i]) {
 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​" Access Granted!"​);
 setColor(​0​,​255​,​0​);
 myServo.​write​(​100​); ​// Unlocks the door
 printNormalModeMessage();

 correctTag = true;

 }

 }

 ​if​ (correctTag == false) {
 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​" Access Denied!"​);
 setColor(​255​,​0​,​0​);
 printNormalModeMessage();

 }

 }

 ​// If door is open...
 ​else​ {
 lcd.​clear​();
 lcd.​setCursor​(​0​, ​0​);
 lcd.​print​(​" Door Opened!"​);
 setColor(​0​,​255​,​0​);
 ​while​ (!doorOpened) {
 proximitySensor = ​analogRead​(A0);
 ​if​ (proximitySensor > ​200​) {
 doorOpened = true;

 }

 }

 doorOpened = false;

 setColor(​0​,​0​,​255​);
 ​delay​(​500​);
 myServo.​write​(​10​); ​// Locks the door
 printNormalModeMessage();

9
ECE 196 | SPRING 2018

 }

}

uint8_t getID() {

 ​// Getting ready for Reading PICCs
 ​if​ (! mfrc522.PICC_IsNewCardPresent()) { ​//If a new PICC placed to RFID reader
continue

 ​return​ ​0​;
 }

 ​if​ (! mfrc522.PICC_ReadCardSerial()) { ​//Since a PICC placed get Serial and continue
 ​return​ ​0​;
 }

 tagID = ​""​;
 ​for​ (uint8_t i = ​0​; i < ​4​; i++) { ​// The MIFARE PICCs that we use have 4 byte UID
 readCard[i] = mfrc522.uid.uidByte[i];

 tagID.concat(​String​(mfrc522.uid.uidByte[i], HEX)); ​// Adds the 4 bytes in a single
String variable

 }

 tagID.toUpperCase();

 mfrc522.PICC_HaltA(); ​// Stop reading
 ​return​ ​1​;
}

void​ printNormalModeMessage() {
 ​delay​(​1500​);
 lcd.​clear​();
 lcd.​print​(​"-Access Control-"​);
 lcd.​setCursor​(​0​, ​1​);
 lcd.​print​(​" Scan Your Tag!"​);
}

void​ setColor(​int​ red, ​int​ green, ​int​ blue){
 ​analogWrite​(redPin, red);
 ​analogWrite​(greenPin, green);
 ​analogWrite​(bluePin, blue);
}

Once the code is changed, upload it to Arduino. The RFID system should have implemented the new
changes. If not, revise the code or ask for help.

10
ECE 196 | SPRING 2018

DOOR, FRAME, LATCH LOCK

Door & Door Frame
This model is designed in Inkscape and is made up of a four-sided door frame, a rectangular door, a latch
latch, and two hinges. The height of the pieces are dependent on the wood thickness used.

Open Inkscape and create the door frame using the following dimensions for top, bottom, left, and right.
Make four sketches of rectangle with the following dimensions:

a. Top: 112.7 mm L x 50 mm W
b. Bottom: 112.7 mm L x 50 mm W
c. Left: 50mm W x 162.7 mm L
d. Right: 58.44 mm W x 162.7mm L

Use ​path → difference​ to cut 6.35 mm W x 10 mm L blocks from two sides of the four pieces. For the right
side of the door frame, cut out two 6.35 mm W x 18.44 mm L blocks and one 7.5 mm W x 7.5 mm L block.
Finally, make a rectangular sketch of the door which is 96 mm W x 150 mm L. Laser cut your give pieces
(top, bottom, left, right, and door) using ¼” plywood (¼ inch).

Figure 1 - Top and bottom door frame Figure 2 - Left door frame

11
ECE 196 | SPRING 2018

Figure 4 - Right door frame Figure 5 - Right door frame

Latch Base
In Solidworks, create the sketch shown in Figure 6. Use the boss extrude feature to give it a depth of 30mm.

Figure 6 - Sketch of the latch base

Create a second sketch on the latch base as shown in Figure 7. Use the cut extrude feature to make a hole
through the previous part with this shape.

Figure 7 - Sketch to cut through the latch base

Finally, use the hole wizard to make four holes for screws. The hole size is M2.

12
ECE 196 | SPRING 2018

Figure 8 - Hole Wizard

Follow the similar steps above to make another part as shown in Figure 9.

Figure 9 - Another part of latch attached to the side of the door

Latch Pin
In Solidworks, create a new sketch as shown in Figure 10. Use the boss extrude feature to it a depth which
depends on how long the latch pin is. Now, make a loop at the end of the latch pin so the lock can be
attached to a servo using a wire. To do this, make a circular sketch on the top plane and an arc sketch on
the right or front plane. Combine the two sketches using the sweep feature.

13
ECE 196 | SPRING 2018

Figure 10 - Sketch of the latch pin Figure 11 - Sketch of the loop

Hinge Design
There are three parts for each of the two identical hinges. Create a sketch as shown in Figure 12. Make
copies of this sketch so there are four total. On two of these sketches, use the boss extrude feature to make
the two-colored region in Figure 13 a 3D object. Then, make an extrude cut as shown in Figure 14. Use the
hole wizard to create three holes on the large, flat side as shown in Figure 15. Finally, fillet both corners as
shown in Figure 15.

Figure 12 - Sketch for the hinge

14
ECE 196 | SPRING 2018

Figure 13 - Boss extrude

Figure 14 - Cut extrude

15
ECE 196 | SPRING 2018

Figure 15 - Fillet

Hinge - Part 2
On the other two sketches, use the boss extrude feature to make the yellow region in Figure 16 a 3D object.
User boss extrude again on the yellow region shown in Figure 17. Use the hole wizard to create three holes
on the large flat side. Finally, use the fillet feature to curve the edge at the corner.

Figure 16 - Boss extrude

16
ECE 196 | SPRING 2018

Figure 17 - Boss extrude

Hinge Pin
Create a circle sketch with radius 2 mm and make the sketch an 3D object with the same depth as the
length of hinge. Use the fillet feature to curve the edge.

Figure 18 - Fillet of the pin

17
ECE 196 | SPRING 2018

Now, 3D print the two latch base parts, latch pin, two hinges, and two hinge pins. Assemble the door, latch
lock, and hinges using super glue.

WEBCAM TRACKING

Build the circuit found under “Project Schematics” using an Arduino Uno, 2 standard servos, and a PIR
motion sensor. Connect the x-axis servo to D6, the y-axis servo to D7, and the PIR motion sensor to D8.

Design a servo connector for the standard servos in Solidworks using the dimensions shown below. When
finished, 3D print the parts and place the servos inside.

Download the Matlab code from Instructables found under the “References” section. Close any open serial
ports at the beginning of the code using:

%% Close open serial ports

if​ ~​isempty​(instrfind)
fclose(instrfind);

delete(instrfind);

end

instrfind

18
ECE 196 | SPRING 2018

Change the COM port to the port your Arduino is connected to.

a = serial(​'COM8'​,​'BaudRate'​,​9600​);

If your laptop has a built-in webcam, the device ID ‘1’ may need to be changed to ‘2’.

obj =imaq.VideoDevice(​'winvideo'​, ​1​, ​'I420_320x240'​,​'ROI'​, [​1​ ​1​ ​320​ ​240​]);

Now, implement a loop for the webcam to continuously read the motion sensor’s status from the Arduino
serial port. It will turn on the webcam when motion is detected and send face center coordinates to Arduino.
It will save frames as a file when motion is no longer detected. Note that saving frames is commented out as
it slows performance. Replace all code after figure('menubar','none','tag','webcam'); with the following and
take time to go through to the comments to understand how it works.

k = ​1​;
while​ k == ​1​; ​%infinite loop
 release(obj); ​%turn off webcam
 wait=​0​;
 ms = str2double(fgetl(a)); ​%read Arduino serial for motion sensor status
 ​i​=​0​;
 ​while​ ms == ​1​; ​%motion detected
 ​i​=​i​+​1​;
 ​while​ (wait<​600​)
 wait=wait+​1
 ms = str2double(fgetl(a));

 %read Arduino serial for motion sensor status

 ​if​ ms == ​0​ ​%motion not detected
 wait = ​700
 time = ​60​;
 ​end
 frame{i}=step(obj); ​%save frames in cells
 ​%STEP Acquires a single frame from image acquisition Device
 ​%frame is the Variable assigned to an image which is either RGB or
 ​%GRAYSCALE
 ​%Acquires a single frame from the VideoDevice System Object,obj.
 bbox=step(faceDetector,frame{i});

 ​if​(~​isempty​(bbox)) ​%face detected

 centx=bbox(​1​) + (bbox(​3​)/​2​)
 centy=bbox(​2​) + (bbox(​4​)/​2​)
 c1=(centx);

 c2=(centy);

 fprintf(a,​'%s'​,char(centx));
 %send face center x-coordinate to Arduino

 fprintf(a,​'%s'​,char(centy));
 ​%send face center y-coordinate to Arduino
 ​end
 ​%BBOX=Bounding Box
 ​%step returns a Matrix of M-by-4 where M is some Variable to bbox
 ​%M defines bounding boxes containing the detected objects

19
ECE 196 | SPRING 2018

 ​%Each row in Matrix has 4 element Vector [x y width height] in pixels
 ​%The objects are detected from Image Named as 'frame'
 ​%detected objects are from face
 boxInserter = vision.ShapeInserter(​'BorderColor'​,​'Custom'​,...
 ​'CustomBorderColor'​,[​255​ ​0​ ​255​]);
 ​%It inserts shapes according to matrix dimensions
 ​%BorderColor is to specify the color of Shape by Default is Black
 ​%Here We set it to 'Custom' so we can use 'CustomBorderColor' to specify
 ​%the color of the border by vector representation
 videoOut = step(boxInserter, frame{i},bbox);

 ​%The Step function here returns an image
 ​%Image consists of a Bounding box for the frame
 ​%The BoxInserter inserts a frame around the image
 ​%Output image is set to variable 'VideoOut'
 imshow(videoOut,​'border'​,​'tight'​);
 ​%imshow basically displays images
 ​%parameters 'Border','tight' indicates and compels the images to be
 ​%displayed without a border
 f=findobj(​'tag'​,​'webcam'​);
 ​if​ (​isempty​(f))
 [hueChannel,~,~] = ​rgb2hsv​(frame{i});
 ​% Display the Hue Channel data and draw the bounding box around the face.
 ​%%figure, imshow(hueChannel), title('Hue channel data');
 rectangle(​'Position'​,bbox(​1​,:),​'LineWidth'​,​2​,​'EdgeColor'​,[​1​ ​1​ ​0​])
 ​%Creates 2-D rectangle at Position of BBOX with width and Edgecolor
 hold off

 ​%Resets to default behaviour
 ​%Clears existing graphs and resets axis properties to their Defaults
 noseDetector = vision.CascadeObjectDetector(​'Nose'​);
 ​%Detects nose properties from the video frame using Cascade package
 ​%the properties are assigned to a variable noseDetector
 faceImage = imcrop(frame{i},bbox);

 ​%crops the Image 'Frame' with Bounding BOX
 ​%%imshow(faceImage)

 ​%Displays image
 noseBBox = step(noseDetector,faceImage);

 ​%Returns NoseBBOX Matrix
 noseBBox(​1​:​1​) = noseBBox(​1​:​1​) + bbox(​1​:​1​);
 videoInfo = info(obj);

 ROI=get(obj,​'ROI'​);
 ​%returns the value of Specified property from the Obj image
 VideoSize = [ROI(​3​) ROI(​4​)];
 videoPlayer = vision.VideoPlayer(​'Position'​,[​300​ ​300​ VideoSize+​60​]);
 ​%Play video or display image with specified position
 tracker = vision.HistogramBasedTracker;

 initializeObject(tracker, hueChannel, bbox);

 time=​0​;

20
ECE 196 | SPRING 2018

 ​while​ (time<​60​)
 time=time+​1
 ​% Extract the next video frame
 frame{i} = step(obj);

 ms = str2double(fgetl(a)); ​% update ms
 ​if​ ms == ​0​ ​%motion not detected
 wait = ​700​;
 time = ​60​;
 release(obj); ​%close webcam
 release(videoPlayer);

 ​end
 ​% RGB -> HSV
 [hueChannel,~,~] = ​rgb2hsv​(frame{i});
 ​% Track using the Hue channel data
 bbox = step(tracker, hueChannel);

 ​% Insert a bounding box around the object being tracked
 videoOut = step(boxInserter, frame{i}, bbox);

 ​%Insert text coordinates
 ​% Display the annotated video frame using the video player object
 step(videoPlayer, videoOut);

 pause (​.2​)
 ​end

 ​% Release resources

 ​%release(obj); %close webcam
 ​%release(videoPlayer);
 ​%release(vidobj);
 close(gcf)

 ​break
 ​end
 pause(​0.05​)
 ​end
% if ms == 0 %motion not detected

% c = clock;

% save('c.mat','frame') %save frames as file

% end

 ​end
end

Download the Arduino code from Instructables found under the “References” section. Add the following code
for the motion sensor to detect motion and communicate whether motion was detected or not to Matlab.

const​ ​int​ MOTION_PIN = ​8​; ​// Pin connected to motion detector
pinMode​(MOTION_PIN, ​INPUT_PULLUP​);
int​ proximity = ​digitalRead​(MOTION_PIN);
 ​if​ (proximity == ​LOW​) ​//Motion detected

21
ECE 196 | SPRING 2018

 {

 ​Serial​.​println​(​"1"​);
 }

 ​else​ ​//Motion not detected
 {

 ​Serial​.​println​(​"0"​);
 }

 ​delay​(​100​);

The x-axis servo tracked the face as expected, but the y-axis had a problem where it continues to turn
downwards. To fix this issue, change the conditions with the following code:

//Find out if the Y component of the face is below the middle of the screen.

if​(valy < (​100​)){
 ​if​(posy >= ​5​)posy += distancey; ​//If it is below the middle of the screen, update the
tilt position variable to lower the tilt servo.

}

//Find out if the Y component of the face is above the middle of the screen.

else​ ​if​(valy > (​100​)){
 ​if​(posy <= ​175​)posy -= distancey; ​//Update the tilt position variable to raise the tilt
servo.

}

Now the code is complete. Connect large gears to the top of your servos. Hot glue the servo connectors and
webcam as shown below. Close any open serial ports by running the code at the beginning of this section in
Matlab. Upload the Arduino code. Upload the Matlab code. Keep constant motion in front of the motion
sensor for the webcam to stay on and tracking. Test your servos to see if track. If they do not, debug the
code.

22
ECE 196 | SPRING 2018

PROJECT SCHEMATICS

23

ECE 196 | SPRING 2018

PROJECT TIMELINE

Name Task

Joseph Chang Webcam Tracking

Hieu Nguyen Webcam Tracking

Richard Nguyen Card Scanner

Benjamin Chang Card Scanner

Kin Ming Loh Door, Frame, Latch Lock

24
ECE 196 | SPRING 2018

REFERENCES

1. How To Mechatronics is a good project-based resource for Arduino. Our project is based off their RFID
door lock tutorial.
https://​howtomechatronics.com/tutorials/arduino/rfid-works-make-arduino-based-rfid-door-lock/

2. Instructables is a good project-based resource with a variety of platforms just like Adafruit. Our project is

based off their Real Time Face Tracking tutorial.
https://www.instructables.com/id/Real-Time-Face-Tracking-Robot-With-Arduino-and-Mat/

3. SparkFun is a vendor that sells a variety of platforms contains tutorials. They have a great tutorial on
how to hookup a PIR motion sensor and write to it in Arduino.

 ​https://learn.sparkfun.com/tutorials/pir-motion-sensor-hookup-guide

4. GrabCAD community offers free CAD files which are ready to build and design for our project.

https://grabcad.com/library/hinge-162

25
ECE 196 | SPRING 2018

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/pir-motion-sensor-hookup-guide

